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ON THE NODAL LINE
OF THE SECOND EIGENFUNCTION
OF THE LAPLACIAN IN R?

ANTONIOS D. MELAS

1. Introduction

A conjecture of L. Payne [8] states that any second eigenfunction of the
Laplacian with zero boundary condition for a bounded domain Q C R?
does not have a closed nodal line. This is also asked by S.-T. Yau [10,
Problem 78] for © a bounded convex domain in R,

L. Payne [9] proved the conjecture provided the domain Q C R? is
symmetric with respect to one line and convex with respect to the di-
rection vertical to this line. Also. C.-S. Lin [7] proved the conjecture
provided the domain Q C R? is smooth, convex, and invariant under a
rotation with angle 2zp/q , where p and g are positive integers. Recently
D. Jerison [5] proved the conjecture for long thin convex sets. Without
any assumption on the smoothness of £ he showed that the nodal line
has to intersect € in exactly two points.

In this paper we prove the conjecture when Q is a bounded convex
domain in R® with C*° boundary.

To fix the notation for a bounded domain Q C R* with smooth bound-
ary we let u, bé a second eigenfunction of €, that is, », is a solution of
the Dirichlet problem

(L1) {Au2+/12u2=0 in Q,

) u,=0 on 6Q,

where A = zle(az / Bxl.z) and 4, is the second eigenvalue of Q.
The nodal line N of u, is defined by

(1.2) N ={x€Q: u,(x)=0}.

The Courant nodal domain theorem implies that N must divide the do-
main Q into exactly two components.
Our main result is the following:
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Theorem 1.1. If Q C R? is a bounded convex domain with C*° bound-
ary, then the nodal line N of any second eigenfunction u, must intersect
the boundary 0Q at exactly two points.

Theorem 1.1 implies

Corollary 1.2. If Q CR® is a bounded convex domain, then the nodal
line N of any second eigenfunction u, does not enclose a compact subre-
gion of Q. N

Proof. Otherwise we can approximate {2 by a convex domain Q with
C™ boundary for which the nodal line of a second eigenfunction of Q
still encloses a compact subregion of Q and this contradicts Theorem 1.1.

In §2 we show as in [7] that if Theorem 1.1 is false, then we can find a
bounded convex domain Q with C* boundary such that the nodal line
N of a second eigenfunction u, intersects dQ at exactly one point o.

In §3 we prove that the above situation is impossible and this proves
Theorem 1.1. To do that we introduce the functions v, = du,/dx, + tu,
for ¢ € R where the x, -direction is tangent to 9Q at o.

We show that for each ¢ € R there exists exactly one subdomain Q,
of Q such that v, = 0 on 9Q,. Since Av, + 4,v, = 0 in Q, it is
concluded that either v, or —wv, is everywhere positive in €Q,. Then
defining A = {eR:v, >0 in Q} and B={t € R:v, <0 in Q;}
we prove that 4, B are closed subsets of R and finally that both are
nonempty. This gives a contradiction since R=AUB and ANB=0.

Also we need a technical lemma which allows us to control the singu-
larity of N on 9Q. It is because of this that we have to assume Q has
C™ boundary. We will state this lemma in §2 but we prove it in §4.

2,

Let (C) be the proposition: “The nodal line of any second eigenfunc-
tion of Q intersects 9Q at exactly two points.” Then Theorem 1.1 means
that (C) is true for any bounded convex domain Q with C* boundary.
For such domains we have the following technical lemma.

Lemma2.1. Let Q CR? bea bounded convex domain with C*° bound-
ary, let ¢ € 0Q, and ro > 0, and suppose u satisfies
2.1) {Au+lu—0 inQ,

u=20 in (8Q)ND(q;ry),

where A is a constant, and D(q, r,) denotes the disc of radius r, centered
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at q. Also assume that the x,-axis is in the direction of the tangent of 0
at q. Then we have the following.

(i) u does not vanish of infinite order at q .
(ii) If the nodal line of u is N, and q € N, then N approaches q
nontangentially with respect to 8.
(iii) There exists an € > 0 such that

[+ [0u/ox;|>0 inQN{x:0<|x—gq|<e¢}.

This lemma will be proved in §4.

The following lemmas are from [7].

Lemma 2.2. Suppose p € 8Q and that Q has C* boundary. Then
(0u,/0v)(0) = 0 if and only if p € N, where du,/dv is the outward
normal derivative of u, on 9Q.

Lemma 2.3. Let u, be a second eigenfunction of Q. If du,/0v >0
on 0Q, then up to multiplication by a constant, u, is the only second
eigenfunction of Q.

Theorem 2.1. Suppose Q, is a bounded convex domain with c=
boundary such that (C) fails for Q. Then there exists a convex bounded
domain Q with C* boundary and a second eigenfunction u, of Q such
that du,/dv has exactly one zero on K.

Proof. This was proved by C.-S. Lin [7]. We sketch the proof here
for completeness. Let Q(f) be a smooth deformation with Q(0) = Q
and Q(1) a disc such that Q(¢) is a bounded convex domain with C*™
boundary. Since (C) fails for Q, and obviously holds for (1), we
may define ¢, = sup{z € [0, 1]: (C) fails for Q(#)} and we have 0 <
ty < 1. Thus there exist sequences ¢,, 7, with f, < 7, < 7, and 1,,
f{, = t, as i — 4oo and such that there exist normalized eigenfunctions

u;, i, of Q(t;), €(i,) respectively such that du;/0v > 0 on 9Q(t,) and
aQu,/a,, has at least two zeros on 9€(f,). Since the second eigenvalue
of Q(t) is a continuous function of ¢, [3], we can by elliptic estimates get
subsequences of {;} and {#%,} convergingto u,, #%, so that u,, #, are
second eigenfunctions of €(z;), and moreover du,/0v > 0 on 9€(¢,),
and di,/0v has at least one zero on 3€)(¢)). By Lemma 2.3 we may
assume u, = i, . Hence du,/0v has at least on zero on 9Q(f,) and does
not change sign on §€(¢;). But from Lemmas 2.1(ii) and 2.2 it follows
that zeros of du,/0v on 3€(t,) are isolated. Since the nodal line of
divides Q(t,) into exactly two components and u, has opposite signs on
each of them, the set of zeros of Ju,/0v on 9€2(¢,) is connected. Hence
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du,/0v has exactly one zero on 9€)z,). This proves the theorem with
Q=Qt,) and u, = u,.

3. Proof of Theorem 1.1

By Theorem 2.1 we conclude that Theorem 1.1 follows from:

Theorem 3.1. If Q C R? is a bounded convex domain with C*° bound-
ary, and u, is a second eigenfunction of Q, then du,/0v cannot have
exactly one zero on 9Q.

Proof. Assume Ou,/dv vanishes at exactly one point 0 € 9Q. We
choose the coordinate axes so that o is the origin, the x,-axis is tangent
to 9Q at o, and the x,-axis is in the direction of the inward normal to
0Q at 0. Let Q" = {x € Q: u,(x) >0} and Q™ = {x € Q: u,(x) < 0}.
By Lemma 2.2, NN 9Q = {o}. Also since by the maximum principle
u, has to change sign near any point in N N Q, we may assume that
Q" = N, and it is easy to see that Q is simply connected.

Since Q is convex, the set of points p on 9, where the tangent to Q
at p is parallel to the x,-axis, consists exactly of two closed line segments
I, J (which may be points) parallel to the x,-axis. Assume o € I and let
I'" and T be the two open subarcs of dQ, which form 4Q\ (JU J).
Since u, is nonnegative near 0Q \ (/ U J) by Hopf’s boundary point
lemma we may assume that

(3.1) du,/8x, >0 inT" and  Ou,/0x, <0 inI .

Also it is obvious that

(3.2) Ouy/0x;, =0 onlUJ.
For any ¢ € R we define v, on Q by
_e 9 _9%
(3.3) v(x)=¢e ox (e™uy(x)) = 5%, (x) + tuy(x).

1
Then we have

(3.4 Av, +4,v,=0 in Q,

where 4, is the second eigenvalue of Q.

Let N, = {x € Q: v,(x) = 0} be the nodal line of v,. By (3.1) we have
NnNoQCcIuJ. Also v, =0 on IUJ. The basic lemma about N, is
the following;:

Lemma 3.1. For every t € R there exists at least one subdomain Q, of
Q such that 9Q, C N,UITUJ.
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Proof. Clearly the gradient of %, vanishes at every point of NN Q,
where N is not C'. By Lemma 2.1(ii), (iii) (for u = u,, ¢ = 0) N
approaches o nontangentially with respect to 9Q, and there exists ¢ > 0
such that du,/0x, has no zeros in NN {x:0 < |x| < ¢}. Hence there
exists # > 0 such that if 0 <77 < # and = {(x;,x): 0 < x, <77},
then NNZ, isa C ! one-manifold with boundary on the line X, =1,
and such that its tangent is never parallel to the x,-axis. Hence N N Zﬁ
does not contain embedded circles or arcs with both endpoints on x, = 7.
Also NNoQ = {o}, and N divides Q into exactly two components.
Thus NN Zﬁ consists of two simple arcs each of which has one endpoint
on x, =17 and approaches o. Hence NN Zn consists of two simple arcs
which approach o, and every line x, =7 for 0 <% < 5 intersects each
of them exactly once. Let y, be one of these arcs.

Now suppose there exists £, € R such that there exists no subdomain
Q' of Q with 8Q' C N, UIUJ . Then from (3.1), (3.2) and the fact that
I'", T are connected, it follows that ﬁ\ (Nt0 U ITUJ) has exactly two
components so that the sets U" = {x € Q: v, (x) >0} and U™ = {x €
Q: Y, (x) < 0} are both connected. We may assume that y, lies in the
interior of U™ . Since T, N8U" = {0} and y, is a simple arc, U" \ y,
is connected. So if x = (x;,n) €y, and y=(y,, ) € ", we may join
x and y by a simple polygonal path y, such that y,\ {x, y} lies in the
interior of U™ \7, . Let y; be the subarc of I'" Ul with endpoints o and
y. Then y = y, Uy, Uy, is a simple closed curve, hence by the Jordan

curve theorem there exists a unique bounded domain W with 6 W = y.
Since Q is simply connected, we have W C Q. Since v, > 0 on 7,
(]

I'NnW =g, and U~ is connected, we have v, >0 in W, so by the
maximum principle v, > 0in W.

Since y, does not meet the line x, = 0, there exists #, with 0 <n, <7
such that p, does not meet the line x, = #, . This line meets y, at exactly
one point ¥ and I'" at exactly one point 7. Hence the line segment
[X, 7] intersects the curve y = W at exactly X and y. Since points on
[X, ¥]1 which are near I'* must be in W, we conclude that [, y] lies
in . On the other hand, e*™'u,(x) vanishes on X and ¥, hence by
(3.3) there exists z in the open segment with endpoints X and y such
that U’o(z) = 0. Butthen z € W and this is a contradiction since v, > 0
in W.

Lemma 3.2. For every t € R we have the following:
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(i) There exists exactly one subdomain Q, of Q such that 0Q, C
NululJ.
(ii) Either v,>0 in Q, or v,>0 in Q,.

(iii) A,(Q,) = 4,, where A,(Q,) is the furst eigenvalue of Q, with respect
to the Dirichlet boundary condition.

(iv) Q, is simply connected.

(v) There exists p > 0 depending only on 1, such that Q, contains a
disc of radius p.

Proof. Fix t € R. (i) Assume there exist two distinct subdomains of
Q whose boundary is contained in N,U/UJ . Then there are two disjoint
subdomains Q,, Q,, of Q such that v, = 0 on 9Q, UJLQ,. Since
Av, + A,v, = 0 in Q, UQ, and A, is the second eigenvalue of €2, this
yields a contradiction as in the proof of Courant’s nodal domain theorem.
Hence (i) follows from Lemma 3.1.

(ii) follows from (i).

(iii) follows from (i) and (ii) since Av,+4,v, =0 in Q.

(iv) follows from (i) and the fact that € is simply connected.

(v) follows from (iii) and (iv) by using Hayman’s inner radius theorem
[4].

Lemma 3.3. There exist C,, C, > 0 such that v,> 0 in Q, for every
t>C, and v,>0 in Q, for every t < -C,.

Proof. Let z e I'". Since d0u,/0x,(z) > 0, there exists ¢ > 0 suffi-
ciently small such that du,/8x, >0 in QnD(z;d), and moreover since
z € Q" , we may assume that D(z;8)NQ =&. Let K =QnD(z;4).
Then using li(Q*) = A4, and the monotonicity principle for eigenvalues,
we have AI(STr \ K) > 4,. Hence by the continuity of the first eigen-
value under continuous deformations of the domain [3] we can choose a
sufficiently large compact subset E of Q~ such that 4,(Q\(KUE)) > 4,.

Let M = sup{|0u,/dx,(x)|: x € Q} and o =inf{|u,(x)|: x € E} > 0.
Now fix any ¢ such that ¢ > o 'M . Then

v,>0 inK and v,<0 inkE.

Hence N,UlUJ C Q\ (K UE), and since Q\ K is simply connected
we have Q, C Q\ K. Also from Lemma 3.2(iii) it follows that 2,(Q) =
Ay < A(Q\(KUE)) sothat Q C Q\(KUE). Hence Q NE # &,
and since v, <0 in E by Lemma 3.2(ii) we must have v, < 0 in €, if
t>a”'M = C,. Similarly we can find C, >0 such that v, <0 in Q, if
t<~-C,.
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Lemma 3.4. Thesets A={tcR:v,>0inQ} and B={teR:v, <
0 in Q,} are closed.

Proof. Assume 1, € A, t; — 1, as j — oo but t;, ¢ A. Then
&3 >0 in Q, and by Lemma 3.2(ii) v, < 0 in Qto' By Lemma 3.3(v)
we can find d1scs D(x p)C Qtj . Taking a subsequence we may assume
X;— Xy € Q. It follows then that D(xy; p) < Q and v, >0 in D(x,; p).
By the maximum principle, v, ( o) > 0. Since v, <0 in Q, , Lemma
3.2(i) implies that N does not separate x, from oQ\(IuU J ) Hence
there exists a curve C [0, 1] — Q such that {(0) = Xy, ¢(1) € 02, and
C*r‘l(N UIUJ) =@, where (" is the image of {. Since x; € D(x;; p) C
Q for sufficiently large j, {* n (N UIuJ)#3. Therefore there exist
Yj e ¢* such that v .(y )=10. Agam by taking a subsequence we may
’ o0 U (V) = 0, hence
Yy € Ntu U I U J which is a contradiction since {* n (N o ululJ)=g.
Thus A is closed. The proof for B is similar. q.e.d.

Now we can finish the proof of Theorem 3.1. By Lemma 3.4, 4 and
B are closed subsets of R. By Lemma 3.2 we have AN B = & and
AUB =R, and by Lemma 3.3 both 4 and B are nonempty. This is a

contradiction since R is connected. Hence Theorem 3.1 is proved, and
now Theorem 1.1 follows from Theorems 2.1 and 3.1.

assume that y;, — y, € {". Then v, (¥p) = lim,

4.

Proof of Lemma 2.1. (i) From the boundary regularity of elliptic dif-
ferential equations it follows that # is C™ up to the boundary near ¢.
Let H = {(x,, x,): x, > 0} be the upper halfplane. Let f: H — Q be a
conformal mapping of H onto Q. By a theorem of Kellogg [6] f extends
C™ to the boundary of H, and we may assume f(0)=gq. Let v =uo f
in H. Then there exists sufficiently small Fy > 0 such that v is C” u
to the boundary in D(0;F))NH and v =0 in D(0;7,) NdH . By (2.1)
we have |Av| = |Au)<>f||f|2 < Clv| in D(0; Fy)nH for some C. Define
9 on D(0;7,) by
v(x,, X,) if x, >0,

(4.1) (x5 X,) = {

-v(x;, —x,) ifx,<0.

Then it is easy to check that 09/9x,, 00/0x,, 6217/6x16x2, and
6217/6x12 are continuous on D(0; 7y), and moreover 6217/6xf = 0 in
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D(0;7) NOH since v = 0 on D(0; rry) NOH. From the inequality
|Av| < Clv| in D(0;F,) nH, it follows that 9°#/x; is also continu-
ous in D(0;7,). Since v is C™ up to the boundary in D(0;7,) N H,
we conclude that ¥ is C**! in D(0; 7)) , and moreover |A9| < C|3] in
D(0;7,). Thus by Aronzajn’s unique continuation theorem [1] @ does
not vanish of infinite order in L'-mean at 0. Since v is C* up to the
boundary in D(0; 7)) NH v does not vanish of infinite order at 0. Hence
u does not vanish of infinite order at ¢ .
(ii) Assume g = 0. By (i) we may write

(4.2) u(x)=p, (x)+0(x|""),  |x|small, x€Q,

where p,, # 0 is a homogeneous polynomial of degree m . Since Au+Au =
0 in ©Q we have

(4.3) Ap,(x) = Oo(x/™™") in Q for small x .

Since Ap,,(x) is homogenecous of degree m —2 and the x,-axis is tangent
to 9Q at 0, we conclude that Ap,(x) =0 in H = {(x, x,): x, > 0},
provided that the x,-axis is in the direction of the inward normal to 9€2
at 0. Since # =0 on D(0; r,)N9Q, by (4.2) we also have that p, (x) =0
on dH , so that reflection p,, is a harmonic polynomial vanishingon 9 H .
Thus introducing polar coordinates, we have

(4.4) D,(r,0)= cr”sinm@, wherec#0.

For r > 0 sufficiently small let 0 < 8™ (r) < 0+(r) < 7 be the unique
angles with (r, Gi(r)) €dQ.If (r,0) € QNN and r <r,, then

u(r, 0 (M) =u(r, ) =u(r,0 (r)=0 and G<6<0 (r).

Therefore there exist 6, and 6,, 6 (r) <0, <0 <6, < 67 (r), such that
ouf/o6((r,0,)) =0 for i =1, 2. By (4.2) and (4.4) we conclude that

|cosm,| < C;r for some constant C; and i =1, 2.

If r<(2C)™", ¢, =n/4m >0, and ¢, =n —n/4m < =, then 8, > c,
and 6, < c,, and thus we have the following: If (r,0) € QN N and
r< (2C1)_1= then 0 < ¢, < @ <c¢, <m. Hence if 0 € N, then N
approaches 0 nontangentially with respect to 9.

(iii) Clearly there is nothing to prove if 0 ¢ N. So we assume that
0 € N. Then by (ii) there exist ¢, , ¢,, 0 < ¢, <¢, <m,and J >0 such
thatif (r, @) isin QNN and 0 <r < J,then ¢; < @ <, and therefore
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sin@ > ¢, , where ¢; = min{sind,, sin6,} > 0. Also from (4.2) and (4.4)
it follows that

(4.5) gxl(r, 0) = mer™ ' sin(m — 1)6 + O(™).
1

If (r,0) isin Q and Au/dx,(r,8) = u(r,d) = 0, then |sinmf| <
C,r and |sin(m — 1)0| < C,r for some constant C,. These imply that
|sin @] < 2C,r.

On the other hand, if 0 < r < and u(r, ) = 0, then sinf > c,.
Hence if ¢ = min{J, (2C2)_1c3} > 0, we have |u|+ |0u/0x,| > 0 in
QuU{x:0< |x| <&}.
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